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Abstract 
Two event-related brain potential (ERP) components elicited during feedback processing are the 
frontocentral feedback-related negativity (FRN), followed by the posterior P300. According to the 
Error-Related Reinforcement Learning Theory (Holroyd & Coles, 2002), the FRN amplitude is 
largest when the outcome is negative and unexpected. Complementing this, studies on the 
subsequent P300 have often reported larger amplitudes for positive than negative outcomes. In 
an influential ERP study, Hajcak et al., (2005) manipulated outcome valence and expectancy in 
a guessing task. However, they found that the FRN component was larger for negative (no-
reward) than positive (reward) outcomes, irrespective of expectancy. Conversely, the P300 
component was larger for unexpected than expected outcomes, irrespective of valence. These 
results were at odds with prominent theories and extant literature. Here, we aim to replicate these 
results within the #EEGManyLabs project (Pavlov et al., 2021). Across thirteen labs we will not 
only undertake a close replication, but test the robustness of these effects to analytical choices 
(e.g. quantification of ERPs) and supplement the findings with Bayesian multilevel linear models 
to test for the reported absence of the effects. 
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1. Introduction 
Performance monitoring is critical for detecting possible mismatches between goals and actions 
and, upon their detection, triggering specific remedial processes (Ullsperger, Fischer, et al., 
2014). This monitoring can be based either on internal cues, such as response errors, or external 
ones, such as unfavorable or negative evaluative feedback. A wealth of studies have used 
electroencephalographic (EEG) methods in humans and established the electrophysiological 
correlates of performance monitoring when it is based on internal or external cues (Ullsperger, 
Danielmeier, et al., 2014). Regarding the latter process, two distinct and successive event-related 
potential (ERP) components have been identified as reliable markers of performance monitoring: 
the feedback-related negativity (FRN) (Gehring & Willoughby, 2002) and the P300 (Courchesne 
et al., 1977). The FRN is a negative component recorded at fronto-central electrodes along the 
midline (most pronounced at electrodes Fz and FCz) that typically peaks around 250 ms after 
feedback onset. It is larger (i.e., more negative-going) for negative than positive 
feedback/outcomes (Miltner et al., 1997). Following the FRN, the P300 component, or more 
specifically the P3b (Polich, 2007; Walentowska et al., 2016), is elicited around 300-500 ms 
following feedback onset, and shows a more central/centro-parietal scalp distribution than the 
FRN (electrodes Cz and Pz). The P300 is larger (i.e., more positive-going) for 
unexpected/infrequent than expected/frequent events (Johnson & Donchin, 1980; Polich, 2007). 
The P300 is most often studied in the context of attention (Herrmann & Knight, 2001) and might 
reflect motivational processes involved during outcome and feedback processing (Huvermann et 
al., 2021; San Martín, 2012). Along these lines, these two ERP components likely reflect different 
aspects of information processing and/or a progressive accumulation of evidence of internal 
predictions endorsed by the participant during performance monitoring (Ullsperger, Danielmeier, 
et al., 2014). 

 The influential Error-Related Negativity Reinforcement Learning Theory (ERN-RL) put 
forward by Holroyd and Coles (2002) proposed that the FRN (and its response-based counterpart, 
the error-related negativity (ERN, Gehring et al., 2018) is a scalp manifestation of neural activity 
originating from the (dorsal) ACC, which itself receives direct dopaminergic inputs from the basal 
ganglia, including the striatum. In this model (Holroyd & Coles, 2002; see also Nieuwenhuis et al., 
2004), the FRN reflects the detection of a discrepancy between the actual and the expected 
outcome (i.e., prediction error). Importantly, this theoretical model assumes that the FRN is larger 
for worse-than-expected relative to better-than-expected outcomes, i.e., the FRN is largest for 
negative prediction errors (see also Walentowska et al., 2019; Walsh & Anderson, 2012). 
Moreover, whether the feedback is utilitarian (e.g., incentive-related) or performance-related (e.g., 
informing about accuracy) is irrelevant, as this signed prediction error captured by the FRN is 
equally large for unexpected negative outcome in both cases (Nieuwenhuis, 2004).  

 Using this framework, Hajcak et al. (2005) performed an EEG study in which they 
assessed amplitude changes of the FRN and P300 components as a function of both valence 
and expectancy. They used a guessing task (a.k.a. the Doors Task; see Holroyd et al., 2003) in 
which participants had to guess which of four presented doors hid a small monetary prize (0.10$ 
reward). Importantly, prior to the choice, the probability to win (25%, 50%, or 75%) was announced 
to manipulate outcome expectancy. Results showed that the FRN did not differentiate between 
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these three levels of expectancy, while the P300 increased as a function of unexpectedness (i.e., 
it was more pronounced for unexpected (25%) than not expected (50%) outcomes, and for not 
expected than expected (75%) outcomes). These findings were found across two experiments in 
which expectancy was manipulated trial-wise (N = 17) and block-wise (N = 12), respectively.  

In the following years, these findings received mixed support, and the extent to which the 
P300 is insensitive to valence and the FRN is insensitive to expectancy remain hotly contested. 
Whereas various experiments and meta-analyses have consistently shown that the P300 
increases with outcome unexpectedness (Stewardson & Sambrook, 2020), the effect of outcome 
valence on the P300 remains unclear. Some studies report similar results as Hajcak et al. (2005), 
i.e., no effect of outcome valence on the P300 component (Pfabigan et al., 2011), yet others have 
shown effects in the opposite direction, i.e., positive outcomes elicited either larger or smaller 
P300 amplitudes (Glazer et al., 2018; San Martín, 2012; Stewardson & Sambrook, 2020). To 
explain these discrepancies, methodological differences such as imbalanced stimulus 
frequencies, have sometimes been discussed (Stewardson & Sambrook, 2020). In comparison, 
the observed insensitivity of the FRN to expectancy has gained much more attention as this 
observation was at odds with the predictions of the influential ERN-RL theory (Holroyd & Coles, 
2002; Walsh & Anderson, 2012) and inconsistent with previous empirical observations (Holroyd 
et al., 2003).  

To reconcile the divergent findings, Hajcak et al. (2005) suggested that this signed 
prediction error effect conferred to the FRN was observed using trial-and-error learning tasks, as 
opposed to guessing tasks. Consistent with this interpretation, later ERP studies using learning-
based tasks reported modulations of the FRN by expectancy (e.g. Ferdinand et al., 2012; Gu et 
al., 2021; Holroyd et al., 2009; Warren & Holroyd, 2012), while expectancy modulations were only 
rarely found in guessing tasks (Gheza et al., 2018; HajiHosseini et al., 2012). The close coupling 
of choices, expectations and the following outcomes could be at the core of this discrepancy 
(Hajcak et al., 2007). Thus, while this finding for the FRN was surprising at first, subsequent 
studies and some meta-analyses confirmed that insensitivity (or lower sensitivity) of the FRN to 
expectancy could be common in contexts in which learning remains inherently limited, such as in 
guessing tasks (e.g. Guthrie, 1942; Sambrook et al., 2012). 

 This original study has engendered a large amount of ERP studies and theoretical models, 
which have often used similar guessing tasks, and characterized the electrophysiological 
correlates of reward processing during performance monitoring in various contexts and situations 
(see Glazer et al., 2018; San Martín, 2012; Walsh & Anderson, 2012). Moreover, following the 
publication of this study, several methodological and theoretical refinements have been proposed 
to explore reward-based feedback processing at the FRN level. Chief amongst these 
developments has been the recognition that variation in the FRN signal may in part be the product 
of a superimposed positive-going deflection, a so-called Reward Positivity (RewP; see Proudfit, 
2015). Accumulating evidence shows that the RewP could capture different performance 
monitoring or motivational effects than the FRN (i.e., consummatory reward processing for the 
RewP as opposed to reward prediction errors for the FRN; (see Foti et al., 2011; Gable et al., 
2021), even though their time-courses and scalp distributions partly overlap (Gheza et al., 2018; 
Krigolson, 2018). It remains to be seen if the proposed sensitivity of the FRN/RewP is driven by 
worse-than-expected signals (negative prediction errors) or by better-than-expected signals 
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(positive prediction errors). Nevertheless, this paradigm shift did not only move the focus towards 
positive (as opposed to negative) outcomes, but also contributed to important methodological 
discussions about how to best measure this early ERP component following feedback onset 
(Klawohn et al., 2020). Hence, next to the FRN and P300 components, it appears important to 
consider the RewP when studying performance monitoring. 

 The results of this study sparked numerous conceptual replications on the nature of the 
FRN and the P300 component across different tasks, motivational contexts, and in clinical and 
non-clinical populations. To date, the work has been cited over 530 times (Google Scholar in 
August 2022). Yet, despite this intense focus, there has been no direct replication of the original 
procedure, measures, and analyses. The goal of the present study is to undertake a multi-lab 
replication of Hajcak et al. (2005), using a trial-by-trial manipulation of both expectancy and 
valence. We intend to complement this direct replication with modern preprocessing and 
analytical approaches to test the robustness of the reported effects. Based on Hajcak et al. (2005), 
we hypothesize that:  

1. The FRN will not vary with expectancy. More specifically, the amplitude of the FRN will 
not be statistically different for expected, not expected, and unexpected outcomes.  

2. The amplitude of the P300 will increase as a function of unexpectedness (i.e., unexpected 
> not expected > expected), irrespective of valence (reward vs. no-reward).  

Finally, if, in contrast to the original replication, but in line with the RL-Theory, we find an effect of 
expectedness on FRN/RewP amplitudes, we will explore which component is driving this effect.  

2. Methods 
2.1. Statistical power and recruitment procedures 

To guide a decision on sample size, the non-significant interaction of expectancy and location for 
the FRN component reported in Hajcak et al. (2005) was used. Not only is this the smallest 
reported effect, it is also the key theoretically relevant result. Unfortunately, the original paper did 
not report a complete set of statistical results (“F(2,32) < 1”), so estimates of the effect size of ηp² 
= 0.0591 are only a rough overestimation of the true effect size. Additionally, there is no meta-
analytical evidence readily available for this effect to compare this estimate. While a meta-analysis 
by Sambrook & Goslin (2015) reported an effect size of d = 0.71 for expectancy modulation of the 
FRN (equal to calculated ηp² = 0.11), it is important to note that this was aggregated across mostly 
learning tasks, and it is reasonable (and also discussed by Sambrook & Goslin (2015)) to assume 
that the effect size could be smaller in guessing tasks. While this could be considered an upper 
bound of the FRN effect of expectancy during guessing tasks, we refrain from using this estimate 
to guide an a-priori sample size determination. 

To circumvent these limitations, we opted for a sensitivity analysis. Based on available 
resources, each of the thirteen replicating labs will provide the data from 25 participants (excluding 

 
1 For this and the following statistics, ηp² was calculated from the reported F values (Cohen, 1988; 
Lakens, 2013), when no F values were reported, we used F = 1. 
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participants because of computer malfunction, drop out, technical problems, or insufficient clean 
data (see below)), resulting in a sample size of 325 participants across all labs. With such a 
sample size, a sensitivity analysis in MorePower (6.0.4. Campbell & Thompson, 2012) showed 
that the smallest effect size that can be reliably detected is ηp² = 0.014 (α = .02, 1 - β = .90, 3x3 
interaction in repeated measures ANOVA). This will allow us to identify a much smaller effect than 
any individual study on this matter has been able to identify so far.  

A similar rationale can be applied to the non-significant valence effect on the P300 (F(1,16) 
= < 1, calculated ηp² = 0.048) and the non-significant interaction of valence and expectancy 
(F(2,32) = 2.88, p >. 09, calculated ηp² = 0.152). In comparison, the effect size of the expectancy 
modulation on the P300 was reported to be relatively large (F(2,32) = 45.48, p < .001, Ɛ = .82, 
calculated ηp² = 0.740). Even after dividing this effect size in half to correct for shrinkage effects 
commonly observed in replication studies (see Pavlov et al. (2021)), each individual lab will have 
the statistical power to replicate this effect in the collected subsample (n = 25, α = .02, ηp² = 0.370, 
1 - β = .99, main effect with 3 levels in repeated measures ANOVA). 

In each replicating lab, participants will be recruited via local advertisements or online 
recruitment systems. For their participation, they will be reimbursed with 15 EUR/ NOK 300 or 
course credits. Additional to that, each participant will receive a payout of their in-task wins of 5 
EUR/ 17 AUD/ 50 NOK / 5000 CLP. Participants are told that they could increase their payouts if 
they choose the “correct door”. However, regardless of their choices the outcome is pre-
programmed and unrelated to the choices made by the participants.  

 For each replicating lab (n=13), the study was approved by the local or national ethical 
committee/Institutional Review Board (Ghent University [2022/14]; German Psychological Society 
(DGPS) [PK-22-02-21]; Bond University [DA03365]; University of Oslo, Department of 
Psychology [20317283] & NSD [320122]; Leiden University [2022-05-12-M.J.W. van der Molen-
V2-3819]; others are in progress).  

 

2.2. Procedure 

The procedure will follow the process employed in Experiment 1 in Hajcak et al. (2005) as closely 
as possible, and any departures from this will be explicitly stated. Participants will be tested 
individually in an EEG laboratory. Upon their arrival in the lab, they will receive a brief description 
of the experiment and will provide informed consent. Then they will be prepared for EEG recording 
and the EEG electrodes will be attached. Participants will be familiarized with the guessing task 
and the feedback using a practice block consisting of 40 trials (not included in the analysis). 
Afterwards, they will complete 6 blocks of the guessing task, with each block comprising 40 trials 
(240 trials in total). Self-paced breaks will be allowed in between blocks. Every other block, the 
experimenter will enter the testing room to inform about the current winnings (which are presented 
on the screen), monitor the EEG signal, and keep participants alert.  

As this project is part of a wider initiative on replicability in EEG (#EEGManyLabs), most 
of the laboratories in this replication will also collect resting state data EEG data together with 
some personality measures (https://osf.io/sp3ck/, (Pavlov et al., 2021). Neither EEG nor 
personality data will be analyzed in the current study but will be merged across sites as part of a 

https://osf.io/sp3ck/
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future replication project to be reported elsewhere. For this purpose, participating labs will record 
8 minutes of resting state EEG and participants will be asked to fill in three brief questionnaires 
(using previously validated translations into the local language where possible) prior to the start 
of the guessing task for the present study. These include the Karolinska Sleepiness Scale (KSS; 
Åkerstedt & Gillberg, 1990), the Positive and Negative Affect Schedule (PANAS; Watson et al., 
1988) and the State Trait Anxiety Inventory Trait Version (STAI-T; Spielberger et al., 1970). After 
the guessing task, the labs recording this additional data will ask participants to fill in the 
Edinburgh Handedness Inventory (EHI; Oldfield, 1971), the Behavioral Inhibition and Approach 
System Scales (BIS-BAS; Carver & White, 1994), the Center for Epidemiologic Studies 
Depression Scale (Events, 1977), and the Short Version of the Big Five Inventory (Gerlitz & 
Schupp, 2005) questionnaires.  In the labs that do not record this additional data (see 
Supplementary Table 1), only the guessing task is presented.2 

 
Figure 1: Trial structure. Each trial comprises three successive visual events: a cue (that informs about 
reward probability in the current trial), followed by the presentation of four doors (imperative stimulus; the 
participant is asked to pick one of them based on guessing), before the outcome (either reward or no-
reward) is presented.  

 

 Each trial starts with a cue presented for 1000 ms in the center of the screen (see Figure 
1). The cue is presented as the number 1, 2, or 3, corresponding to a probability of winning of 
25%, 50%, or 75%. After this cue, four doors appear in the center of the screen and the participant 
is asked to select one of them by pressing one of four pre-defined keys on the keyboard (exact 
keys vary across labs but correspond to four horizontally aligned keys pressed with the index and 
middle fingers of both hands, e.g., ZCBM for QWERTY keyboards, see supplementary Table 1). 
Participants are asked to guess which door could contain a prize. The four doors stay on screen 
until the response/choice. Then a blank screen ensues (500 ms), before the outcome is presented 
in green font for 1000 ms. The outcome is presented as a “+”, indicating that a small monetary 
reward is attained (value is 0.04 EUR or 0.15 AUD or 0.4 NKR or 35 CLP), or as a “o”, indicating 
that no-reward is attained. The trial ends with a 1000 ms blank screen used as inter-trial interval. 
Stimuli are presented in white on black background. Accordingly, in this task, reward motivation 
is promoted while no punishment motivation is involved.  

 
2 Since the recording of the additional data before the guessing task will take less than 15 minutes, we do 
not expect that these differences will affect the results. Nevertheless, we will account for inter-lab 
variance in our statistical analyses (see below). 
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There are six experimental conditions, corresponding to the combinations of cue and 
outcome: expected reward (i.e., “+” symbol following “3” used as cue, 60 trials), not expected 
reward (i.e., “+” symbol following “2” used as cue, 40 trials), unexpected reward (“+” symbol 
following “1” used as cue, 20 trials), expected no-reward (i.e., “o” symbol following “1” used as 
cue, 60 trials), not expected no-reward (i.e., “o” symbol following “2” used as cue, 40 trials), and 
unexpected no-reward (i.e., “o” symbol following “3” used as cue, 20 trials). Across all blocks, 
these 6 conditions are shown in random order.  

 Upon completion of the task, participants will be asked to answer two questions related to 
the attention paid to the numerical cue prior to the doors and the outcome during the experiment. 
These are answered on a seven-point scale, ranging from “ignored it” to “paid close attention” by 
the corresponding numbers on the keyboard. 

 The whole experiment will last approximately 1 to 1.5 hours. The experiment is 
programmed using Presentation software (Neurobehavioral Systems, Inc., www.neurobs.com) 
and PsychoPy (Peirce, 2007) and translated into the local languages (English, Dutch, German, 
Norwegian, Spanish). Additional details on the used version of the experiment, the screen size, 
operating systems, used equipment etc. at each replicating lab are listed in the Supplementary 
Table 1.  

Supplementary Table 1. Overview of EEG set-up and recording details at each replicating lab  
Participating 
University Amplifier 

System Electrode/Cap 
Model, Number EEG 
+ external 
electrodes 

Sampling 
Rate 

Reference, 
Ground Online Filter Operating 

System 
Screen Type, Size, 
Ratio, Refresh 
Rate 

Stimulus 
Presentation, 
Language 

Buttons for 
task Recording of 

additional data 
(Resting/ 
Questionnaires) 

Australian National 
University, Australia Biosemi Biosemi, active,  

64 + 6 
512 CMS/DRL LP filter: 5th 

order CIC at 102 
Hz -3dB 

Windows 
10 

LCD, 24 in, 
1920:1080, 60 Hz Psychopy 

(20.1.3), English ZCBM on 
QWERTY 
keyboard 

yes 

Bond University, 
Australia Biosemi Biosemi, active,  

32 + 6 
512 CMS/DRL LP filter:  5th 

order CIC at 
102Hz -3dB 

Windows 
10 

LCD, 23 in, 
1980:1080, 120 Hz PsychoPy 

(21.2.3), English ZCBM on 
QWERTY 
keyboard 

yes 

Central Institute of 
Mental Health 
Mannheim, 
Germany 

BrainProducts BrainProducts 
actiCap slim, active, 
64  

500 FCz, AFz High and low 
pass filter 0.1 - 
100Hz  

Windows 
10 LCD, 24 in, 

1980:1080, 60 Hz 
Presentation 
(20.3), German YCBM on 

QWERTZ 
keyboard 

yes 

CINPSI Neurocog 
UCMaule, Chile Biosemi Biosemi, active,  

64 + 6 
512 CMS/DRL LP filter: 5th 

order CIC at 102 
Hz -3dB 

Windows 7 LCD, 24 in, 
1920:1080, 75 Hz PsychoPy 

(20.1.3), Spanish left/right 
Ctrl/Alt on 
QWERTZ 
keyboard 

yes 

Erasmus University 
Rotterdam, The 
Netherlands 

Biosemi Biosemi, active,  
64+ 6 

512 CMS/DRL LP filter:  5th 
order CIC at 
102Hz  -3dB 

Windows 
10 

LED, 24 in, 
1920:1080, 120 Hz Presentation 

(23), Dutch  ZCBM on 
QWERTY 
keyboard 

yes 

Ghent University, 
Belgium Biosemi Biosemi, active,  

64+6 
512 CMS/DRL LP filter:  5th 

order CIC at 
102Hz -3dB 

Windows 
10 

CRT, 19 in, 
1024:768, 75 Hz Presentation 

(23.0), Dutch ZCBM on 
QWERTY 
keyboard 

yes 

Goethe University 
Frankfurt am Main 
and DIPF, Germany 

BrainProducts EasyCap, active, 
64 + 1 

1000 FCz, AFz LP filter: 5th 
order 
Butterworth at 
250Hz 30dB 

Windows 
10 

LCD, 24 in,  
1920: 108, 60 Hz PsychoPy 

(21.1.4), German left/right 
Ctrl/Alt on 
QWERTZ 
keyboard 

yes 

Leiden University,  
The Netherlands Biosemi Biosemi, active, 

64+6 
512 CMS/DRL LP filter:  5th 

order CIC at 
102Hz -3dB 

Windows 
10 

LCD, 24 in, 16:19, 
60 Hz Psychopy 

(22.1.1), Dutch ZCBM on 
QWERTY 
keyboard 

yes 

Medical School 
Hamburg, Germany BrainProducts BrainProducts 

actiCap snap active, 
32 

1000 FCz, AFz Low cutoff (s): 
10 
High cutoff (Hz): 
1000 

Windows 
10 

LCD (LED 
backlight), 23 in, 
1920:1080, 60 Hz 

Presentation 
(20.1), German YCBM on 

QWERTZ 
keyboard 

yes 

Technical University 
Dresden, Germany BrainProducts EasyCap, passive, 

custom equidistant 
montage (No. 10), 
63 + 1 

500 AFF1h, 
AFF2h Low cutoff (s): 

10  
High cutoff (Hz): 
250  

Windows 
10 

LED, 24 in, 
1920:1080, 144 Hz Presentation 

(19.0), German YCBM on 
QWERTZ 
keyboard 

yes 

University 
Hamburg, Germany Biosemi Biosemi, active, 

64+6 
512 CMS/DRL LP filter:  5th 

order CIC at 
102Hz -3dB 

Windows 7 LCD, 24 in, 16:19, 
60 Hz Psychopy 

(20.1.3), German left/right 
Ctrl/Alt on 
QWERTZ 
keyboard 

yes 
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University of Oslo, 
Norway BrainProducts EasyCap No. 3, 

active, 
32 + 1 

500 FCz, AFz LP filter: 5th 
order 
Butterworth at 
250Hz 30dB 

Windows 
10 

LED, 24 in, 
1920:1080,120 Hz Psychopy 

(20.1.3), 
Norwegian 

left/right 
Ctrl/Alt on 
QWERTY 
keyboard 

no 

University of 
Regensburg, 
Germany 

NeuroOne EasyCap, passive, 
32  

1000 FCz,AFz LP filter: 250 Hz Windows 
10 

LCD, 24 in, 16:19, 
60 Hz Psychopy 

(20.1.3), German left/right 
Ctrl/Alt on 
QWERTZ 
keyboard 

yes 

 
 
2.3. Neurophysiological recordings  

The replicating labs will be using one of the following four EEG systems: (1) Biosemi Active 2; (2) 
BrainAmp DC, (3) BrainAmp actiCHamp Plus, (4) NeurOne Tesla. Using elastic caps, all labs will 
record with either 32 or 64 channels positioned according to the extended 10/20 EEG system; 
(Chatrian et al., 1985)). One to four of these 32/64 electrodes or one to four additional external 
electrodes will be used to record electro-oculogram (EOG), and two on the left and right mastoids. 
One EOG electrodes will be attached at least below the left eye, additional electrodes might be 
placed above the left eye and on the outer canthi of the two eyes. The EEG (and EOG) data will 
be sampled at 512, 500, 1000 Hz (depending on the setup). Labs also vary in their use of active 
vs. passive electrodes, and the applied online reference/ground (CMS/DRL, Cz, FCz, AFz). For 
details on each lab’s set-up, see supplementary Table 2.3 

 

2.4. Artifact removal and EEG preprocessing 

Data preprocessing will closely follow the original study, including the following steps: activity 
recorded from Fz, Cz, and Pz and the additional external electrodes will be: (i) re-referenced to 
Cz (the online-reference of the original study); (ii) filtered with a high-/low-pass filter of 0.05 and 
35 Hz (the offline filter settings of the original study; EEGLAB defaults (Delorme & Makeig, 2004), 
transition band width 0.05/8.75 Hz, passband edge 0.05/35 Hz, cutoff frequency (-6dB) 
0.025/39.38 Hz) (iii) down-sampled to 200/250/256 Hz as the original study recorded with a 
sampling rate of 200 Hz; (iv) segmented into epochs of interest (-500/+1500 ms around the onset 
of the outcome); (v) corrected for ocular artifacts (following Gratton et al., 1983, implemented into 
MATLAB by Mittner 2007, see attached scripts); (vi) re-referenced to the linked mastoids; (vii) 
cleaned of segments containing artifacts (25 ms of invariant analog data on any channel; voltage 
exceeding ±100 µV)4; (viii) low-pass filtered at 20 Hz using a FIR filter (eeglab defaults, transition 
band width 5 Hz, passband edge 20 Hz, cutoff frequency (-6dB) 22.5 Hz); (ix) baseline corrected 
to -200 to 0 ms prior to outcome onset.  

In addition to the use of a data preprocessing protocol that closely follows the one provided 
in the original study, the data will also be preprocessed according to recent developments in 
psychophysiology, which will allow us to test the robustness of the results. Activity recorded from 
all EEG sensors will be: (i) down-sampled to 500/512 Hz (if recorded with higher sampling rates); 

 
3 The new recordings deviate from the original study in a few notable points: amplifier setup (Grass Model 
7D polygraph with Neurosoft Quik-caps), number of recording sites (9), sampling rate (200 Hz), as well as 
pre-processing software (VPM) and applied offline filters (bandpass 0.05–35 Hz). 
4 The original study excluded data segments based on invariant data and/or A/D values exceeding the 
converter’s minimum/maximum values. Since all replicating labs record with a different setup than the 
original study, we chose this cut-off instead. 
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(ii) re-referenced to mastoids; (iii) high-pass filtered at 0.1 Hz using a FIR filter (eeglab defaults, 
transition band width 0.1 Hz, passband edge 0.1 Hz, cutoff frequency (-6dB) 0.05 Hz); (iv) low-
pass filtered at 40 Hz using a FIR filter (eeglab defaults, transition band width 10 Hz, passband 
edge 40 Hz, cutoff frequency (-6dB) 45 Hz); (v) interpolated (spherically) if activity is invariant (>5 
s) or not correlated to other channels (r<0.8); (vi) cleaned from bad segments identified by ASR 
(with burst criterion of 50 SD, ran on 1 Hz high-pass filtered data; segments flagged as bad are 
then removed from the unfiltered data); (vii) cleaned for ocular artifacts through an Independent 
Component Analysis (ICA, infomax, performed on 1Hz high-pass filtered data, rank lowered by 
the number of interpolated channels, otherwise eeglab defaults; weights are then applied to the 
unfiltered data) and ICLabel (based on the probability of being not a brain component (<30 %) but 
ocular artifacts (>70%)); (viii) segmented into epochs of interest (-200/+800 ms around the onset 
of the outcome); (ix) baseline corrected to -200 to 0 ms prior to outcome onset; and (x) cleaned 
of bad segments (epochs deviating more than 3.29 SD (Tabachnick & Fidell, 2007) from trimmed 
normalized means with respect to joint probability, kurtosis or the spectrum).  

 

2.5. Outlier handling 

The original study did not mention the use of any particular outlier criterion, and therefore for the 
direct replication the data from all participants will be included.  

Nevertheless, to test the robustness of the results, we will aim to ensure good data quality in two 
ways: First, from all complete recordings, we will exclude participants who have more than 75% 
of trials rejected (i.e., only 60 trials out of the 240 trials used). Second, we will exclude participants 
who have less than 8 trials per condition (as the FRN shows good internal consistency with at 
least 8 trials (Ethridge & Weinberg, 2018). Included trial number as well as standardized 
measurement error (Luck et al., 2021) will be calculated and reported to describe data quality 
across conditions (and across participating labs).  

To ensure that all participants paid attention to the numerical cues as well as the outcome, 
participants will be excluded if they indicated in the attention ratings that they ignored the cue (i.e. 
answering with one or two on the seven-point scale).  

2.6. Quantification of the ERPs 

The FRN will be quantified at Fz, Cz, and Pz as follows: First, a difference wave will be created 
by subtracting the ERP observed for reward outcomes from the ERP observed for no-reward 
outcomes. This difference wave will be computed separately for expected outcomes (expected 
no-reward minus expected reward), not expected outcomes (not expected no-reward minus not 
expected reward), and unexpected outcomes (unexpected no-reward minus unexpected reward). 
For each level of expectancy, the FRN will be defined as the maximum negative amplitude of 
these difference waves within a window between 200 and 500 ms following outcome onset.  The 
P300 will be scored at Pz as follows. Unlike the FRN, no difference wave will be created. For each 
of the six conditions, the P300 will be defined as the most positive peak in the ERP 200 to 600 
ms following outcome onset. 

 In addition to this direct replication of the ERP components, we will also score the FRN 
(or alternatively the RewP) and the P300 as mean amplitudes, since peak amplitude values are 



9 

often more sensitive to high-frequency noise (Luck, 2014). Together with comparing different 
preprocessing of the data this will allow us to test the robustness of the results. The FRN/RewP 
will be scored following current recommendations as the mean amplitude 200-300 ms following 
outcome onset (Gheza et al., 2018; Krigolson, 2018; Proudfit, 2015; Sambrook & Goslin, 2015), 
while the P300 will be scored as the mean amplitude 300 - 500 ms following outcome onset.  

Considering that the FRN and the P300 components occur in rapid succession, we will 
additionally quantify the EEG components in terms of a principal component analysis (PCA) to 
ascertain possibly dissociable effects on these components and to disentangle them better using 
the ERP PCA Toolkit (EP Toolkit, version 2.80; Dien, 2010b). The individual ERPs (for each of 
the six conditions) from the preprocessing following current standards and after excluding outliers 
(see above) will be used for this analysis. Considering the differences in the recording systems 
that will be used, the individual ERPs will first be standardized. Specifically, data will be 
downsampled to a common denominator (500 Hz) and only common electrodes will be used. The 
ERPs will be then subjected to a recommended two-step sequential PCA (Spencer et al., 1999, 
2001). If not further specified, all default values in the graphical interface will be used. The 
procedure will begin with a temporal Promax rotation to capture the variance across the time 
points from the average ERP data, followed by a spatial Infomax (ICA) rotation to obtain the 
variance of the spatial distribution of the data across the common recording sites (Dien, 2010a). 
The number of factors retained in each step will depend on the scree plot such that only factors 
explaining more variance than identified in random data will be included (similar to parallel testing, 
see Dien, 2012). From all temporospatial factor combinations, default windowing will be applied 
to screen out factors explaining less than 0.5% variance. All remaining factors will be 
reconstructed into voltage space, in which the voltage accounted for at the peak time point and 
channel are evaluated as ERP waveforms. Factors whose peak latencies and channels will 
coincide (based on visual inspection) with the canonical scalp distribution and time course of the 
FRN (fronto-central, 200-300 ms) and P3 components (posterior-central, 300-500 ms) will be 
tested. 

 
2.7. Statistical Analyses  

The main focus of the analyses is (1) a direct replication of the approach applied in the original 
study using repeated measures analyses of variance (ANOVAs). However, we will also test the 
robustness of these effects (2) in multilevel models (MLMs), and (3) in a meta-analysis of our 
effects identified in each lab. 

2.8. Statistical Analyses  

2.8.1. Direct Replication through ANOVAs 

The ERP amplitudes calculated from the preprocessing and quantification methods used in the 
original study are subjected to two ANOVAs. For the FRN, the peak amplitude values will be 
analyzed using a 3 (Location) x 3 (Expectancy) ANOVA. For the P300, a 2 (Valence) x 3 
(Expectancy) ANOVA will be used. In case a sphericity violation is detected, Greenhouse–Geisser 
correction will be applied to p values. The significance alpha level will be set to 0.02. If the ANOVA 
reveals an effect of expectancy for the FRN, we will follow up on this with a 2 (Valence) x 3 
(Expectancy) ANOVA on the amplitudes extracted at Fz (where it was shown to be maximal in 



10 

the original study). A significant interaction of Valence and Expectancy, and the corresponding 
post-hoc tests will be used to test if this was driven by the response to reward outcomes (in the 
sense of a RewP) or no-reward outcomes (in the sense of a FRN). 

 

Table 1. Overview of Planned Analyses 
Analytical  
Step 

Direct 
Replication 

Robustness 
Test 1 

Robustness 
Test 2 

Robustness 
Test 3 

Robustness 
Test 4 

Robustness 
Test 5 

Robustness 
Test 6 

Pre- 
processing 

Original Original Original Current 
standard 

Current 
standard 

Original Current 
Standard 

Outlier 
handling 

None None None Applied Applied None Applied 

Quantification 
of ERPs 

Peak Peak Mean Peak Mean Peak PCA 

Statistical  
Test 

ANOVA  MLM MLM MLM MLM Meta-Analysis 
on ANOVA  

ANOVA 

 

2.8.2. Robustness test through MLMs 

To better account for variability across participants and laboratories, we will fit eight 
Bayesian multilevel linear models on the FRN and P300 amplitude values. These models are set 
up identically, but the dependent variable will be extracted either after (1) “original” or “current 
standard” preprocessing pipelines, and (2) quantified as either “peak” scores (as in the original 
publication) or as “mean” scores (as a more robust measure of the ERP components). By crossing 
these analytical choices, we will be able to assess the impact of these choices on the outcome 
and the robustness of the replication. 

The models will be specified as follows (in Wilkinson notation (Wilkinson & Rogers, 1973)): 

FRN_amplitudes = 1 + location * expectancy + (1 + location * expectancy | laboratory / participant)  

P300_amplitudes = 1 + valence * expectancy + (1 + valence * expectancy | laboratory / participant) 

Robustness test 1. Amplitudes will be extracted after the preprocessing of the original 
publication and defined as the maximum peak in the specified time window. This follows the 
analysis of the original publication most closely while controlling for inter-lab variance. 

Robustness test 2. Amplitudes will be extracted after the preprocessing of the original 
publication and defined as the mean in the specified time window.  

Robustness test 3. Amplitudes will be extracted after the modernized preprocessing and 
defined as the maximum peak in the specified time window.  

Robustness test 4. Amplitudes will be extracted after the modernized preprocessing and 
defined as the mean in the specified time window.  
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We will allow intercepts and slopes to vary as a function of participant and laboratory, to model 
varying effects on amplitude peak (or mean) originating from different laboratory setups and 
individual characteristics (e.g., skull thickness, hair). As a likelihood function, we will choose a 
Gaussian distribution. 

An important aspect of Bayesian analysis is the choice of priors (e.g., Natarajan & Kass, 2000). 
Given the unknown susceptibility of the electrophysiological signal to inter-individual differences 
in relation to the predictors of interest, we will place a weakly informative prior on intercepts and 
slopes: a normal distribution with μ = 0 and and σ = 10. Since we have no prior knowledge 
regarding the other model parameters (e.g., standard deviation of laboratory or participant), we 
will keep the software default weakly informative priors. 

Models will be fitted in R using the brms package (Bürkner, 2018), which employs the probabilistic 
programming language Stan (Carpenter et al., 2017) to implement a Markov chain Monte Carlo 
(MCMC) algorithm (Hoffman, 2014) to estimate posterior distributions of the parameters of 
interest. We will start sampling by using 4 MCMC chains with 4000 iterations (2000 warm-up) and 
no thinning. In case of non-convergence, we will increase the number of iterations by 500 until 
convergence will be reached or a maximum of 8000 iterations per chain. Model convergence will 
be assessed as follows: (i) visual inspection of trace plots, rank plots, and graphical posterior 
predictive checks (Gabry et al., 2019); (ii) Gelman-Rubin R̂ statistic (Gelman & Shalizi, 2013) 
between 1 and 1.05 (see also Nalborczyk et al., 2019). Goodness-of-fit will be assessed via 
Bayesian R2 (Gelman et al., 2019). 

Posterior distributions of the model parameters will be summarized using the mean and 95% 
credible interval (CI). Differences between conditions will be calculated by computing the 
difference between posterior distributions of the respective conditions and summarized as above. 

The existence of an effect will be ascertained using the MAP-Based p-Value (pMAP), a Bayesian 
equivalent of the frequentist p-value (Mills, 2018). This index represents the odds of the posterior 
distribution of the parameter of interest against the point null hypothesis H0 = 0 and, 
mathematically, corresponds to the density value at 0 divided by the density at the Maximum A 
Posteriori (MAP) (see also Makowski et al., 2019). Following the current arbitrary p-value 
convention, we will consider an effect statistically significant if pMAP < .02. 

Two caveats of the pMAP should be noted here (Makowski et al., 2019). First, just like the 
frequentist p-value, pMAP allows us to assess the presence of an effect, not its magnitude or 
practical importance. Second, pMAP is sensitive only to the amount of evidence for the alternative 
hypothesis H1, but it is not useful when assessing the amount of evidence in favor of the null 
hypothesis H0. In our case, pMAP < .02 would suggest that the effect is statistically significant. 
However, pMAP > .02 would not allow us to conclude that the effect does not exist, only 
uncertainty about its existence (absence of evidence rather than evidence of absence). 

To address these issues and increase the informativeness of our results, we will additionally 
compute Bayes factors (BF; (Jeffreys, 1998; Kass & Raftery, 1995; Morey et al., 2016). BFs 
indicate “the extent to which the data sway our relative belief from one hypothesis to the other” 
(Etz & Vandekerckhove, 2018, p. 10). Bayes factors will be calculated as a Savage-Dickey density 
ratio (Dickey & Lientz, 1970; Wagenmakers et al., 2010), i.e., comparing the marginal likelihoods 
of the alternative model against a model in which the tested parameter (i.e., the posterior 
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distribution of condition differences) has been restricted to the point-null. We will descriptively 
qualify BF according to the arbitrary convention proposed by Kass & Raftery (1995):  (i) BF10 = 1: 
no evidence in favor of H1; (ii) 1 < BF10 < 3: weak evidence in favor of H1; (iii) 3 < BF10 < 20: positive 
evidence in favor of H1; (iv) 20 < BF10 < 150: strong evidence in favor of H1; (v) BF10 > 150: very 
strong evidence in favor of H1. The reciprocal of BF10 (i.e., BF01 = 1/BF10) will indicate the 
corresponding evidence in favor of H0. 

 

2.8.3. Meta-Analysis (Robustness Test 5) 

Even though each replicating lab only has the statistical power to test the effect of 
expectancy on the P300, the data of each lab separately will be subjected to the same ANOVAs 
described in (i). Then, a random effects meta-analysis will be run where the effect sizes of valence 
(for the P300) or electrode (for the FRN), expectancy, and their interaction gathered in each 
replicating lab will be combined. Forest and funnel plots will be computed. We will report and plot 
median and distribution of the weighted and unweighted effect sizes, 95% confidence intervals, 
and the number of labs successfully replicating the original effect. The metafor package 
(Viechtbauer, 2010) for R will be used for the meta-analysis. 

 

2.8.4. Temporospatial Principal Component Analysis (Robustness Test 6) 

The PCA factors will be analyzed using the statistics function of the EP toolkit using all 
default parameters. The implemented ANOVAs are robust against violations of statistical 
assumptions. It includes the following features: (i) trimmed means (cutting the outer quartiles) and 
winsorized covariances that protect against outliers; (ii) a bootstrapping routine (499,999 
simulations, ran 11 times) that estimates the population distribution instead of assuming the 
normality of this distribution; and (iii) a Welch–James approximate degrees-of-freedom statistic 
that does not assume the homogeneity of error variance (Dien, 2010b). The robust 2x3 repeated-
measures ANOVA will include the within-subject factors Valence and Expectancy. The p-value 
will be adjusted with the Bonferroni correction for multiple comparisons. Follow-up tests for 
significant interactions will be reported. In case the interaction effect needs a better 
characterization of its source, a robust t-test will be performed in R Studio using the Yuen test 
(Yuen, 1974) of the WRS2 (Mair & Wilcox, 2020) package. This particular test allows for mean 
trimming, making the analysis consistent with the parameters implemented in the robust ANOVA 
of the EP Toolkit.  

Similar to the results from the main analyses above, we expect for the factor corresponding 
to the FRN a significant main effect for valence (more factor negativity for no-reward outcomes), 
but no effect of expectancy or their interaction. In contrast, for the factor corresponding to the 
P300 component, we expect a significant effect of expectancy (more factor positivity for 
unexpected outcomes), but no effect of valence or their interaction.  

 

2.9 Evaluation of the Replication and Robustness of Effects 
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The replication’s success will mainly be evaluated in the light of the outcomes of the ANOVAs 
(see (i) above): The FRN results will be considered to be replicated successfully if the ANOVA 
shows a significant main effect of position (Fz > Pz), but no significant effect of expectancy or the 
interaction of expectancy and position. The P300 results will be considered to be replicated 
successfully if the ANOVA shows a significant main effect of expectancy (unexpected > 
expected), but no significant effect of valence or the interaction of expectancy and position.  

However, going beyond the mere replication of the original study, we provide preliminary 
robustness tests by comparing these results to the outcomes of the MLMs (see (ii) above) and a 
PCA (see (iv) above). If the MLMs and the PCA provide evidence for a similar pattern of results 
as (i), the effect will be considered not only to be replicated but robust and, to some extent, 
independent of analytical choices. If the direct replication fails, i.e. significant effects are detected 
where none were expected, or expected effects do not reach significance, the MLMs will be 
particularly important to conclude if the effects are present or not. If the pattern diverges across 
the robustness tests, possible sources of these discrepancies will be discussed (with regard to 
preprocessing choices and/or quantification of the ERPs). Finally, the results of the MLM, 
(Robustness Test 1) will be compared to the meta-analysis (see (iii) above).  

 

2.10. Analysis of ratings 

The descriptive statistics for the subjective ratings pertaining to the attention paid to the cue and 
the feedback will be reported (see Hajcak et al., 2005).  

 

2.11. Sharing of Data and Code 

Pre-processing steps will be carried out using EEGLAB 2022.0 (Delorme & Makeig, 2004) 
implemented in MATLAB 2019, while statistical analyses will be carried out in R (R-Core-Team, 
2019). All experimental procedures, pre-processing scripts, analytical analyses and the results of 
the meta-/mega-analysis were tested on pilot data and will be shared openly, using the Open 
Science Framework (OSF, https://osf.io/2w9gy, ReadOnlyLink for review: 
https://osf.io/2w9gy/?view_only=d79c0538c9e04f1298848dcfd7266d5d ). All collected data will 
be made available online through GIN (https://gin.g-node.org/).  

 

3. Declaration of Interest 
The authors declare that there is no conflict of interest. Funders and employers had no role in 
study design or the decision to submit the work for publication. 

 

https://osf.io/2w9gy
https://osf.io/2w9gy/?view_only=d79c0538c9e04f1298848dcfd7266d5d
https://gin.g-node.org/


14 

4. Acknowledgements 
#EEGManyLabs is funded by the DFG (PA 4005/1-1), provided to YGP. FB is funded by DFG 
(BU 3255/1-2). AS is employed at Erasmus Research Services (Erasmus University Rotterdam) 
as Senior Advisor Open Science. KP is funded by DFG (PA 4014/2-2). DMP is funded by the 
South-Eastern Norway Regional Health Authority (2021046). JP is funded by DFG (PE 2077/6-
1; PE 2077/7-1). YLS is funded by the European Union (ERC-2018-StG-PIVOTAL-758898). 

 

5. References  
Åkerstedt, T., & Gillberg, M. (1990). Subjective and Objective Sleepiness in the Active 

Individual. International Journal of Neuroscience, 52(1–2), 29–37. 
https://doi.org/10.3109/00207459008994241 

Allen, L., Scott, J., Brand, A., Hlava, M., & Altman, M. (2014). Publishing: Credit where credit is 
due. Nature, 508(7496), 312–313. 

Bürkner, P. C. (2018). Advanced Bayesian multilevel modeling with the R package brms. R 
Journal, 10(1), 395–411. https://doi.org/10.32614/rj-2018-017 

Campbell, J. I. D., & Thompson, V. A. (2012). MorePower 6.0 for ANOVA with relational 
confidence intervals and Bayesian analysis. Behavior Research Methods, 44(4), 1255–
1265. https://doi.org/10.3758/s13428-012-0186-0 

Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective 
responses to impending reward and punishment: The BIS/BAS Scales. In Journal of 
Personality and Social Psychology (Vol. 67, pp. 319–333). https://doi.org/10.1037/0022-
3514.67.2.319 

Chatrian, G. E., Lettich, E., & Nelson, P. L. (1985). Ten percent electrode system for 
topographic studies of spontaneous and evoked EEG activities. American Journal of EEG 
Technology, 25(2), 83–92. 

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Journal of 
Neuroscience Methods. 

Courchesne, E., Hillyard, S. A., & Courchesne, R. Y. (1977). P3 Waves to the Discrimination of 
Targets in Homogeneous and Heterogeneous Stimulus Sequences. Psychophysiology, 
14(6), 590–597. https://doi.org/10.1111/j.1469-8986.1977.tb01206.x 

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial 
EEG dynamics including independent component analysis. Journal of Neuroscience 
Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 

Dickey, J. M., & Lientz, B. P. (1970). The Weighted Likelihood Ratio, Sharp Hypotheses about 
Chances, the Order of a Markov Chain. The Annals of Mathematical Statistics, 41(1), 214–
226. https://doi.org/10.1214/aoms/1177697203 

Dien, J. (2010a). Evaluating two-step PCA of ERP data with Geomin, Infomax, Oblimin, 
Promax, and Varimax rotations. Psychophysiology, 47(1), 170–183. 
https://doi.org/10.1111/j.1469-8986.2009.00885.x 



15 

Dien, J. (2010b). The ERP PCA Toolkit: An open source program for advanced statistical 
analysis of event-related potential data. Journal of Neuroscience Methods, 187(1), 138–
145. https://doi.org/10.1016/j.jneumeth.2009.12.009 

Dien, J. (2012). Applying Principal Components Analysis to Event-Related Potentials: A Tutorial. 
Developmental Neuropsychology, 37(6), 497–517. 
https://doi.org/10.1080/87565641.2012.697503 

Ethridge, P., & Weinberg, A. (2018). Psychometric properties of neural responses to monetary 
and social rewards across development. International Journal of Psychophysiology, 
132(January), 311–322. https://doi.org/10.1016/j.ijpsycho.2018.01.011 

Etz, A., & Vandekerckhove, J. (2018). Introduction to Bayesian Inference for Psychology. 
Psychonomic Bulletin and Review, 25(1), 5–34. https://doi.org/10.3758/s13423-017-1262-3 

Events, L. (1977). The CES-D Scale : A Self-Report Depression Scale for Research in the 
General Population. Applied Psychological Measurement, 1(3), 385–401. 

Ferdinand, N. K., Mecklinger, A., Kray, J., & Gehring, W. J. (2012). The Processing of 
Unexpected Positive Response Outcomes in the Mediofrontal Cortex. Journal of 
Neuroscience, 32(35), 12087–12092. https://doi.org/10.1523/JNEUROSCI.1410-12.2012 

Foti, D., Weinberg, A., Dien, J., & Hajcak, G. (2011). Event-related potential activity in the basal 
ganglia differentiates rewards from nonrewards: Response to commentary. Human Brain 
Mapping, 32(12), 2267–2269. https://doi.org/10.1002/hbm.21357 

Gable, P. A., Paul, K., Pourtois, G., & Burgdorf, J. (2021). Utilizing electroencephalography 
(EEG) to investigate positive affect. Current Opinion in Behavioral Sciences, 39, 190–195. 
https://doi.org/10.1016/j.cobeha.2021.03.018 

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in 
Bayesian workflow. Journal of the Royal Statistical Society. Series A: Statistics in Society, 
182(2), 389–402. https://doi.org/10.1111/rssa.12378 

Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (2018). The Error-
Related Negativity. Perspectives on Psychological Science, 13(2), 200–204. 
https://doi.org/10.1177/1745691617715310 

Gehring, W. J., & Willoughby, A. R. (2002). The Medial Frontal Cortex and the Rapid 
Processing of Monetary Gains and Losses. Science, 295(5563), 2279–2282. 
https://doi.org/10.1126/science.1066893 

Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian Regression 
Models. American Statistician, 73(3), 307–309. 
https://doi.org/10.1080/00031305.2018.1549100 

Gelman, A., & Shalizi, C. R. (2013). Philosophy and the practice of Bayesian statistics. British 
Journal of Mathematical and Statistical Psychology, 66(1), 8–38. 
https://doi.org/10.1111/j.2044-8317.2011.02037.x 

Gerlitz, J.-Y., & Schupp, J. (2005). Zur Erhebung der Big-Five-basierten 
Persönlichkeitsmerkmale im SOEP. Research Notes 4, May, 1–44. 
https://doi.org/10.1016/j.jsis.2005.07.003 

Gheza, D., Paul, K., & Pourtois, G. (2018). Dissociable effects of reward and expectancy during 
evaluative feedback processing revealed by topographic ERP mapping analysis. 
International Journal of Psychophysiology, 132(November), 213–225. 
https://doi.org/10.1016/j.ijpsycho.2017.11.013 



16 

Glazer, J. E., Kelley, N. J., Pornpattananangkul, N., Mittal, V. A., & Nusslock, R. (2018). Beyond 
the FRN: Broadening the time-course of EEG and ERP components implicated in reward 
processing. International Journal of Psychophysiology, 132(2), 184–202. 
https://doi.org/10.1016/j.ijpsycho.2018.02.002 

Gratton, G., Coles, M. G. ., & Donchin, E. (1983). A new method for off-line removal of ocular 
artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468–484. 
https://doi.org/10.1016/0013-4694(83)90135-9 

Gu, Y., Liu, T., Zhang, X., Long, Q., Hu, N., Zhang, Y., & Chen, A. (2021). The Event-Related 
Potentials Responding to Outcome Valence and Expectancy Violation during Feedback 
Processing. Cerebral Cortex, 31(2), 1060–1076. https://doi.org/10.1093/cercor/bhaa274 

Guthrie, E. R. (1942). Conditioning: A theory of learning in terms of stimulus, response, and 
association. Teachers College Record, 43(10), 17–60. 

Hajcak, G., Holroyd, C. B., Moser, J. S., & Simons, R. F. (2005). Brain potentials associated 
with expected and unexpected good and bad outcomes. Psychophysiology, 42(2), 161–
170. https://doi.org/10.1111/j.1469-8986.2005.00278.x 

Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2007). It’s worse than you thought: 
The feedback negativity and violations of reward prediction in gambling tasks. 
Psychophysiology, 44(6), 905–912. https://doi.org/10.1111/j.1469-8986.2007.00567.x 

HajiHosseini, A., Rodríguez-Fornells, A., & Marco-Pallarés, J. (2012). The role of beta-gamma 
oscillations in unexpected rewards processing. NeuroImage, 60(3), 1678–1685. 
https://doi.org/10.1016/j.neuroimage.2012.01.125 

Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: event-related 
potentials and oscillations. Neuroscience & Biobehavioral Reviews, 25(6), 465–476. 
https://doi.org/10.1016/S0149-7634(01)00027-6 

Hoffman. (2014). The No-U-Turn Sample. Journal of Machine Learning Research, 15, 1593–
1623. http://mcmc-jags.sourceforge.net 

Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: 
Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 
109(4), 679–709. https://doi.org/10.1037/0033-295X.109.4.679 

Holroyd, C. B., Krigolson, O. E., Baker, R., Lee, S., & Gibson, J. (2009). When is an error not a 
prediction error ? An electrophysiological investigation. Cognitive, Affective, & Behavioral 
Neuroscience, 9(1), 59–70. https://doi.org/10.3758/CABN.9.1.59 

Holroyd, C. B., Nieuwenhuis, S., Yeung, N., Cohen, J. D., Nieuwenhuis, C. A. S., Nick, Y., & 
Cohen, J. D. (2003). Errors in reward prediction are reflected in the event-related brain 
potential. Neuroreport, 14(18), 2481–2484. 
https://doi.org/10.1097/01.wnr.0000099601.41403.a5 

Huvermann, D. M., Bellebaum, C., & Peterburs, J. (2021). Selective Devaluation Affects the 
Processing of Preferred Rewards. Cognitive, Affective and Behavioral Neuroscience, 21(5), 
1010–1025. https://doi.org/10.3758/s13415-021-00904-x 

Jeffreys, H. (1998). The theory of probability. OUP Oxford. 
Johnson, R., & Donchin, E. (1980). P300 and Stimulus Categorization: Two Plus One is not so 

Different from One Plus One. Psychophysiology, 17(2), 167–178. 
https://doi.org/10.1111/j.1469-8986.1980.tb00131.x 

Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical 



17 

Association, 90(430), 773–795. https://doi.org/10.1080/01621459.1995.10476572 
Klawohn, J., Meyer, A., Weinberg, A., & Hajcak, G. (2020). Methodological choices in event-

related potential (ERP) research and their impact on internal consistency reliability and 
individual differences: An examination of the error-related negativity (ERN) and anxiety. 
Journal of Abnormal Psychology, 129(1), 29–37. https://doi.org/10.1037/abn0000458 

Krigolson, O. E. (2018). Event-related brain potentials and the study of reward processing: 
Methodological considerations. International Journal of Psychophysiology, 132(November 
2017), 0–1. https://doi.org/10.1016/j.ijpsycho.2017.11.007 

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A 
practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(NOV), 1–12. 
https://doi.org/10.3389/fpsyg.2013.00863 

Luck, S. J. (2014). An introduction to the event-related potential technique. MIT press. 
Luck, S. J., Stewart, A. X., Simmons, A. M., & Rhemtulla, M. (2021). Standardized 

measurement error: A universal metric of data quality for averaged event-related potentials. 
Psychophysiology, 58(6), 1–15. https://doi.org/10.1111/psyp.13793 

Mair, P., & Wilcox, R. (2020). Robust statistical methods in R using the WRS2 package. 
Behavior Research Methods, 52(2), 464–488. https://doi.org/10.3758/s13428-019-01246-w 

Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., & Lüdecke, D. (2019). Indices of Effect 
Existence and Significance in the Bayesian Framework. Frontiers in Psychology, 
10(December), 1–14. https://doi.org/10.3389/fpsyg.2019.02767 

Mills, J. (2018). Objective Bayesian Precise Hypothesis Testing. 
https://doi.org/10.13140/RG.2.2.13158.32328 

Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Event-Related Brain Potentials 
Following Incorrect Feedback in a Time-Estimation Task: Evidence for a “Generic” Neural 
System for Error Detection. Journal of Cognitive Neuroscience, 9(6), 788–798. 
https://doi.org/10.1162/jocn.1997.9.6.788 

Morey, R. D., Romeijn, J. W., & Rouder, J. N. (2016). The philosophy of Bayes factors and the 
quantification of statistical evidence. Journal of Mathematical Psychology, 72, 6–18. 
https://doi.org/10.1016/j.jmp.2015.11.001 

Nalborczyk, L., Batailler, C., Loevenbruck, H., Vilain, A., & Bürkner, P. C. (2019). An 
introduction to bayesian multilevel models using brms: A case study of gender effects on 
vowel variability in standard Indonesian. Journal of Speech, Language, and Hearing 
Research, 62(5), 1225–1242. https://doi.org/10.1044/2018_JSLHR-S-18-0006 

Natarajan, R., & Kass, R. E. (2000). Reference Bayesian Methods for Generalized Linear Mixed 
Models. Journal of the American Statistical Association, 95(449), 227–237. 
https://doi.org/10.1080/01621459.2000.10473916 

Nieuwenhuis, S. (2004). Sensitivity of Electrophysiological Activity from Medial Frontal Cortex to 
Utilitarian and Performance Feedback. Cerebral Cortex, 14(7), 741–747. 
https://doi.org/10.1093/cercor/bhh034 

Nieuwenhuis, S., Holroyd, C. B., Mol, N., & Coles, M. G. H. (2004). Reinforcement-related brain 
potentials from medial frontal cortex : origins and functional significance. 28, 441–448. 
https://doi.org/10.1016/j.neubiorev.2004.05.003 

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. 
Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4 



18 

Pavlov, Y. G., Adamian, N., Appelhoff, S., Arvaneh, M., Benwell, C. S. Y., Beste, C., Bland, A. 
R., Bradford, D. E., Bublatzky, F., Busch, N. A., Clayson, P. E., Cruse, D., Czeszumski, A., 
Dreber, A., Dumas, G., Ehinger, B., Ganis, G., He, X., Hinojosa, J. A., … Mushtaq, F. 
(2021). #EEGManyLabs: Investigating the replicability of influential EEG experiments. 
Cortex, 144, 213–229. https://doi.org/10.1016/j.cortex.2021.03.013 

Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. Journal of Neuroscience 
Methods, 162(1–2), 8–13. 

Pfabigan, D. M., Alexopoulos, J., Bauer, H., & Sailer, U. (2011). Manipulation of feedback 
expectancy and valence induces negative and positive reward prediction error signals 
manifest in event-related brain potentials. Psychophysiology, 48(5), 656–664. 
https://doi.org/10.1111/j.1469-8986.2010.01136.x 

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical 
Neurophysiology : Official Journal of the International Federation of Clinical 
Neurophysiology, 118(10), 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019 

Proudfit, G. H. (2015). The reward positivity: From basic research on reward to a biomarker for 
depression. Psychophysiology, 52(4), 449–459. https://doi.org/10.1111/psyp.12370 

R-Core-Team. (2019). R: A language and environment for statistical computing. R Foundation 
for Statistical Computing. 

Sambrook, T. D., & Goslin, J. (2015). A neural reward prediction error revealed by a meta-
analysis of ERPs using great grand averages. Psychological Bulletin, 141(1), 213–235. 
https://doi.org/10.1037/bul0000006 

Sambrook, T. D., Roser, M., & Goslin, J. (2012). Prospect theory does not describe the 
feedback-related negativity value function. Psychophysiology, 49, 1533–1544. 
https://doi.org/10.1111/j.1469-8986.2012.01482.x 

San Martín, R. (2012). Event-related potential studies of outcome processing and feedback-
guided learning. Frontiers in Human Neuroscience, 6, 1–17. 
https://doi.org/10.3389/fnhum.2012.00304 

Spencer, K., Dien, J., & Donchin, E. (1999). A componential analysis of the ERP elicited by 
novel events using a dense electrode array. Psychophysiology, 36(3), 409–414. 
https://doi.org/10.1017/S0048577299981180 

Spencer, K., Dien, J., & Donchin, E. (2001). Spatiotemporal analysis of the late ERP to deviant 
stimuli. Psychophysiology, 38, 343–358. https://doi.org/10.1111/1469-8986.3820343 

Spielberger, C. D., Gorsuch, R., & Lushene, R. (1970). Manual for the State-Trait Anxiety 
Inventory. In Education. 

Stewardson, H. J., & Sambrook, T. D. (2020). Evidence for parietal reward prediction errors 
using great grand average meta-analysis. International Journal of Psychophysiology, 
152(April), 81–86. https://doi.org/10.1016/j.ijpsycho.2020.03.002 

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics, 5th ed. In Using 
multivariate statistics, 5th ed. Allyn & Bacon/Pearson Education. 

Ullsperger, M., Danielmeier, C., & Jocham, G. (2014). Neurophysiology of performance 
monitoring and adaptive behavior. Physiological Reviews, 94(1), 35–79. 
https://doi.org/10.1152/physrev.00041.2012 

Ullsperger, M., Fischer, A. G., Nigbur, R., & Endrass, T. (2014). Neural mechanisms and 
temporal dynamics of performance monitoring. Trends in Cognitive Sciences, 18(5), 259–



19 

267. https://doi.org/10.1016/j.tics.2014.02.009 
Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metafor Package. Journal of 

Statistical Software, 36(3). https://doi.org/10.18637/jss.v036.i03 
Wagenmakers, E. J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis 

testing for psychologists: A tutorial on the Savage-Dickey method. Cognitive Psychology, 
60(3), 158–189. https://doi.org/10.1016/j.cogpsych.2009.12.001 

Walentowska, W., Moors, A., Paul, K., & Pourtois, G. (2016). Goal relevance influences 
performance monitoring at the level of the FRN and P3 components. Psychophysiology, 
53(7), 1020–1033. https://doi.org/10.1111/psyp.12651 

Walentowska, W., Severo, M. C., Moors, A., & Pourtois, G. (2019). When the outcome is 
different than expected: Subjective expectancy shapes reward prediction error at the FRN 
level. Psychophysiology, 56(12), 1–16. https://doi.org/10.1111/psyp.13456 

Walsh, M. M., & Anderson, J. R. (2012). Learning from experience: Event-related potential 
correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience & 
Biobehavioral Reviews, 36(8), 1870–1884. https://doi.org/10.1016/j.neubiorev.2012.05.008 

Warren, C. M., & Holroyd, C. B. (2012). The Impact of Deliberative Strategy Dissociates ERP 
Components Related to Conflict Processing vs. Reinforcement Learning. Frontiers in 
Neuroscience, 6(APR). https://doi.org/10.3389/fnins.2012.00043 

Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of 
positive and negative affect: The PANAS scales. Journal of Personality and Social 
Psychology, 54(6), 1063–1070. https://doi.org/10.1037/0022-3514.54.6.1063 

Wilkinson, G. N., & Rogers, C. E. (1973). Symbolic Description of Factorial Models for Analysis 
of Variance. Applied Statistics, 22(3), 392. https://doi.org/10.2307/2346786 

Yuen, K. K. (1974). The two-sample trimmed t for unequal population variances. Biometrika, 
61(1), 165–170. https://doi.org/10.1093/biomet/61.1.165 

 


	TitlePage
	Replication_Hajcak_V2
	Abstract
	1.
	1. Introduction
	2. Methods
	2.1. Statistical power and recruitment procedures
	2.2. Procedure
	2.3. Neurophysiological recordings
	2.4. Artifact removal and EEG preprocessing
	2.5. Outlier handling
	2.6. Quantification of the ERPs
	2.7. Statistical Analyses
	2.8. Statistical Analyses
	2.8.1. Direct Replication through ANOVAs
	2.8.2. Robustness test through MLMs
	2.8.3. Meta-Analysis (Robustness Test 5)
	2.8.4. Temporospatial Principal Component Analysis (Robustness Test 6)

	2.9 Evaluation of the Replication and Robustness of Effects
	2.10. Analysis of ratings
	2.11. Sharing of Data and Code

	1.
	2.
	3. Declaration of Interest
	4. Acknowledgements
	5. References


